
2023-24 MATH2048: Honours Linear Algebra II

Homework 9 Answer

Due: 2023-11-27 (Monday) 23:59

For the following homework questions, please give reasons in your solutions.

Scan your solutions and submit it via the Blackboard system before due date.

1. Let V be a finite-dimensional inner product space, and let T be a linear operator on

V . If T is invertible, then T ∗ is invertible and (T ∗)−1 = (T−1)∗.

Proof. Given that T is invertible, there exists a unique linear operator T−1 such that

TT−1 = T−1T = I, where I is the identity operator.

We want to show that T ∗ is also invertible and that (T ∗)−1 = (T−1)∗.

First, note that under the adjoint operation, we have (TT−1)∗ = (T−1)∗T ∗ = I∗ = I

and (T−1T )∗ = T ∗(T−1)∗ = I∗ = I. Hence, T ∗(T−1)∗ = (T−1)∗T ∗ = I.

This shows that there exists a unique operator (T−1)∗ such that T ∗(T−1)∗ = (T−1)∗T ∗ =

I, which proves that T ∗ is invertible and its inverse is (T−1)∗, i.e., (T ∗)−1 = (T−1)∗.

This completes the proof.

2. Let V be an inner product space, and let T be a linear operator on V . Prove the

following results.

(a) R(T ∗)⊥ = N(T ).

(b) If V is finite-dimensional, then R(T ∗) = N(T )⊥

Proof. (a) If x ∈ R(T ∗)⊥, then 〈x, T ∗(y)〉 = 0 for any y ∈ V . So 〈T (x), y〉 =

〈x, T ∗(y)〉 = 0 for any y ∈ V which implies T (x) = 0 i.e. x ∈ N(T ).

If x ∈ N(T ), then 〈x, T ∗(y)〉 = 〈T (x), y〉 = 〈0, y〉 = 0 for any y ∈ V . So

x ∈ R(T ∗).
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(b) If V is finite-dimensional, then R(T ∗) is finite-dimensional. Therefore R(T ∗) =

(R(T ∗)⊥)⊥ = N(T )⊥

3. Let T be a normal operator on a finite-dimensional complex inner product space V ,

and let W be a subspace of V . If W is T -invariant, then W is also T ∗-invariant.

Proof. We know that since T is a normal operator, it is diagonalizable. Hence, T |W ,

the restriction of T on W , is normal too and thus diagonalizable as well.

Let {w1, w2, . . . , wn} be a basis for W consisting of eigenvectors of T . Since T is

normal, its eigenvectors are also eigenvectors for T ∗. This means {w1, w2, . . . , wn}

is also a basis for W consisting of eigenvectors of T ∗.

Let w ∈ W be arbitrary. Then w can be written as a linear combination of the

basis vectors, say w =
∑n

i=1 aiwi for some scalars ai. Then T ∗w =
∑n

i=1 aiT
∗wi =∑n

i=1 aiλiwi where λi are the eigenvalues corresponding to the eigenvectors wi of T ∗.

Hence, T ∗w ∈W for all w ∈W , meaning W is T ∗-invariant.

This completes the proof.

4. Let T be a normal operator on a finite-dimensional inner product space V . Then

N(T ) = N(T ∗) and R(T ) = R(T ∗).

Proof. Recall that an operator T is normal if TT ∗ = T ∗T . Also recall that N(T )

denotes the nullspace (or kernel) of T and R(T ) denotes the range (or image) of T .

(i) We’ll show that N(T ) = N(T ∗):

Since T is normal, one has ‖T (x)‖2 = 〈T (x), T (x)〉 = 〈T ∗T (x), x〉 = 〈TT ∗(x), x〉 =

〈T ∗(x), T ∗(x)〉 = ‖T ∗(x)‖2 for any x ∈ V . So x ∈ N(T ) ⇐⇒ ‖T (x)‖ = 0 ⇐⇒

‖T ∗(x)‖ = 0 ⇐⇒ x ∈ N(T ∗). Therefore, we have N(T ) = N(T ∗).

(ii) We’ll show that R(T ) = R(T ∗):

• Claim 1: N(TT ∗) = N(T ).

If TT ∗(x) = 0, then 0 = 〈TT ∗(x), x〉 = 〈T ∗T (x), x〉 = 〈T (x), T (x)〉 which

implies T (x) = 0. If T (x) = 0, then TT ∗(x) = T ∗T (x) = T ∗(0) = 0.

• Claim 2: R(TT ∗) = R(T ).

First, R(TT ∗) ⊂ R(T ) is obvious. Second, by claim 1 and the rank-nullity

theorem, one has rank(TT ∗) = rank(T ). Therefore R(TT ∗) = R(T )..
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Thus R(T ) = R(TT ∗) = R(T ∗T ) = R(T ∗T ∗∗) = R(T ∗)

Or alternatively, using the result of §6.3 Q12, one has R(T ∗) = N(T )⊥ = N(T ∗)⊥ =

R(T ∗∗) = R(T ).

This completes the proof.

5. Let U be a unitary operator on an inner product space V , and let W be a finite-

dimensional U -invariant subspace of V . Prove that

(a) U(W ) = W

(b) W⊥ is U -invariant.

Proof. (a) If x ∈ N(U |W ), then 0 = ‖U |W (x)‖ = ‖U(x)‖ = ‖x‖, which implies

x = 0. Therefore, U |W is one-to-one. Since U |W : W → W is defined on a

finite-dimensional space W , one has U |W is onto. Thus U(W ) = U |W (W ) = W .

(b) Let x ∈ W⊥. For any y ∈ W , by (a), there exists z ∈ W such that U(z) = y.

Then 〈U(x), y〉 = 〈U(x), U(z)〉 = 〈x, z〉 = 0. Therefore U(x) ∈W⊥.

This completes the proof.
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