2023-24 MATH2048: Honours Linear Algebra II Homework 9 Answer

Due: 2023-11-27 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. If T is invertible, then T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.

Proof. Given that T is invertible, there exists a unique linear operator T^{-1} such that $T T^{-1}=T^{-1} T=I$, where I is the identity operator.

We want to show that T^{*} is also invertible and that $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
First, note that under the adjoint operation, we have $\left(T T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}=I^{*}=I$ and $\left(T^{-1} T\right)^{*}=T^{*}\left(T^{-1}\right)^{*}=I^{*}=I$. Hence, $T^{*}\left(T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}=I$.

This shows that there exists a unique operator $\left(T^{-1}\right)^{*}$ such that $T^{*}\left(T^{-1}\right)^{*}=\left(T^{-1}\right)^{*} T^{*}=$ I, which proves that T^{*} is invertible and its inverse is $\left(T^{-1}\right)^{*}$, i.e., $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. This completes the proof.
2. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
(a) $R\left(T^{*}\right)^{\perp}=N(T)$.
(b) If V is finite-dimensional, then $R\left(T^{*}\right)=N(T)^{\perp}$

Proof. (a) If $x \in R\left(T^{*}\right)^{\perp}$, then $\left\langle x, T^{*}(y)\right\rangle=0$ for any $y \in V$. So $\langle T(x), y\rangle=$ $\left\langle x, T^{*}(y)\right\rangle=0$ for any $y \in V$ which implies $T(x)=0$ i.e. $x \in N(T)$.

If $x \in N(T)$, then $\left\langle x, T^{*}(y)\right\rangle=\langle T(x), y\rangle=\langle 0, y\rangle=0$ for any $y \in V$. So $x \in R\left(T^{*}\right)$.
(b) If V is finite-dimensional, then $R\left(T^{*}\right)$ is finite-dimensional. Therefore $R\left(T^{*}\right)=$ $\left(R\left(T^{*}\right)^{\perp}\right)^{\perp}=N(T)^{\perp}$
3. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. If W is T-invariant, then W is also T^{*}-invariant.

Proof. We know that since T is a normal operator, it is diagonalizable. Hence, $\left.T\right|_{W}$, the restriction of T on W, is normal too and thus diagonalizable as well.

Let $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a basis for W consisting of eigenvectors of T. Since T is normal, its eigenvectors are also eigenvectors for T^{*}. This means $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is also a basis for W consisting of eigenvectors of T^{*}.

Let $w \in W$ be arbitrary. Then w can be written as a linear combination of the basis vectors, say $w=\sum_{i=1}^{n} a_{i} w_{i}$ for some scalars a_{i}. Then $T^{*} w=\sum_{i=1}^{n} a_{i} T^{*} w_{i}=$ $\sum_{i=1}^{n} a_{i} \lambda_{i} w_{i}$ where λ_{i} are the eigenvalues corresponding to the eigenvectors w_{i} of T^{*}. Hence, $T^{*} w \in W$ for all $w \in W$, meaning W is T^{*}-invariant.

This completes the proof.
4. Let T be a normal operator on a finite-dimensional inner product space V. Then $N(T)=N\left(T^{*}\right)$ and $R(T)=R\left(T^{*}\right)$.

Proof. Recall that an operator T is normal if $T T^{*}=T^{*} T$. Also recall that $N(T)$ denotes the nullspace (or kernel) of T and $R(T)$ denotes the range (or image) of T.
(i) We'll show that $N(T)=N\left(T^{*}\right)$:

Since T is normal, one has $\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle T^{*} T(x), x\right\rangle=\left\langle T T^{*}(x), x\right\rangle=$ $\left\langle T^{*}(x), T^{*}(x)\right\rangle=\left\|T^{*}(x)\right\|^{2}$ for any $x \in V$. So $x \in N(T) \Longleftrightarrow\|T(x)\|=0 \Longleftrightarrow$ $\left\|T^{*}(x)\right\|=0 \Longleftrightarrow x \in N\left(T^{*}\right)$. Therefore, we have $N(T)=N\left(T^{*}\right)$.
(ii) We'll show that $R(T)=R\left(T^{*}\right)$:

- Claim 1: $N\left(T T^{*}\right)=N(T)$.

If $T T^{*}(x)=0$, then $0=\left\langle T T^{*}(x), x\right\rangle=\left\langle T^{*} T(x), x\right\rangle=\langle T(x), T(x)\rangle$ which implies $T(x)=0$. If $T(x)=0$, then $T T^{*}(x)=T^{*} T(x)=T^{*}(0)=0$.

- Claim 2: $R\left(T T^{*}\right)=R(T)$.

First, $R\left(T T^{*}\right) \subset R(T)$ is obvious. Second, by claim 1 and the rank-nullity theorem, one has $\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}(T)$. Therefore $R\left(T T^{*}\right)=R(T)$..

Thus $R(T)=R\left(T T^{*}\right)=R\left(T^{*} T\right)=R\left(T^{*} T^{* *}\right)=R\left(T^{*}\right)$
Or alternatively, using the result of $\S 6.3$ Q12, one has $R\left(T^{*}\right)=N(T)^{\perp}=N\left(T^{*}\right)^{\perp}=$ $R\left(T^{* *}\right)=R(T)$.

This completes the proof.
5. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
(a) $U(W)=W$
(b) W^{\perp} is U-invariant.

Proof. (a) If $x \in N\left(\left.U\right|_{W}\right)$, then $0=\left\|\left.U\right|_{W}(x)\right\|=\|U(x)\|=\|x\|$, which implies $x=0$. Therefore, $\left.U\right|_{W}$ is one-to-one. Since $\left.U\right|_{W}: W \rightarrow W$ is defined on a finite-dimensional space W, one has $\left.U\right|_{W}$ is onto. Thus $U(W)=\left.U\right|_{W}(W)=W$.
(b) Let $x \in W^{\perp}$. For any $y \in W$, by (a), there exists $z \in W$ such that $U(z)=y$. Then $\langle U(x), y\rangle=\langle U(x), U(z)\rangle=\langle x, z\rangle=0$. Therefore $U(x) \in W^{\perp}$.

This completes the proof.

