2023-24 MATH2048: Honours Linear Algebra II Homework 9 Answer

Due: 2023-11-27 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. If T is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Given that T is invertible, there exists a unique linear operator T^{-1} such that $TT^{-1} = T^{-1}T = I$, where I is the identity operator.

We want to show that T^* is also invertible and that $(T^*)^{-1} = (T^{-1})^*$. First, note that under the adjoint operation, we have $(TT^{-1})^* = (T^{-1})^*T^* = I^* = I$ and $(T^{-1}T)^* = T^*(T^{-1})^* = I^* = I$. Hence, $T^*(T^{-1})^* = (T^{-1})^*T^* = I$.

This shows that there exists a unique operator $(T^{-1})^*$ such that $T^*(T^{-1})^* = (T^{-1})^*T^* = I$, which proves that T^* is invertible and its inverse is $(T^{-1})^*$, i.e., $(T^*)^{-1} = (T^{-1})^*$. This completes the proof.

- 2. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
 - (a) $R(T^*)^{\perp} = N(T).$
 - (b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$

Proof. (a) If $x \in R(T^*)^{\perp}$, then $\langle x, T^*(y) \rangle = 0$ for any $y \in V$. So $\langle T(x), y \rangle = \langle x, T^*(y) \rangle = 0$ for any $y \in V$ which implies T(x) = 0 i.e. $x \in N(T)$. If $x \in N(T)$, then $\langle x, T^*(y) \rangle = \langle T(x), y \rangle = \langle 0, y \rangle = 0$ for any $y \in V$. So $x \in R(T^*)$.

- (b) If V is finite-dimensional, then $R(T^*)$ is finite-dimensional. Therefore $R(T^*) = (R(T^*)^{\perp})^{\perp} = N(T)^{\perp}$
- 3. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. If W is T-invariant, then W is also T^* -invariant.

Proof. We know that since T is a normal operator, it is diagonalizable. Hence, $T|_W$, the restriction of T on W, is normal too and thus diagonalizable as well.

Let $\{w_1, w_2, \ldots, w_n\}$ be a basis for W consisting of eigenvectors of T. Since T is normal, its eigenvectors are also eigenvectors for T^* . This means $\{w_1, w_2, \ldots, w_n\}$ is also a basis for W consisting of eigenvectors of T^* .

Let $w \in W$ be arbitrary. Then w can be written as a linear combination of the basis vectors, say $w = \sum_{i=1}^{n} a_i w_i$ for some scalars a_i . Then $T^*w = \sum_{i=1}^{n} a_i T^*w_i = \sum_{i=1}^{n} a_i \lambda_i w_i$ where λ_i are the eigenvalues corresponding to the eigenvectors w_i of T^* . Hence, $T^*w \in W$ for all $w \in W$, meaning W is T^* -invariant.

This completes the proof.

4. Let T be a normal operator on a finite-dimensional inner product space V. Then $N(T) = N(T^*)$ and $R(T) = R(T^*)$.

Proof. Recall that an operator T is normal if $TT^* = T^*T$. Also recall that N(T) denotes the nullspace (or kernel) of T and R(T) denotes the range (or image) of T.

(i) We'll show that $N(T) = N(T^*)$:

Since T is normal, one has $||T(x)||^2 = \langle T(x), T(x) \rangle = \langle T^*T(x), x \rangle = \langle TT^*(x), x \rangle = \langle T^*(x), T^*(x) \rangle = ||T^*(x)||^2$ for any $x \in V$. So $x \in N(T) \iff ||T(x)|| = 0 \iff ||T^*(x)|| = 0 \iff x \in N(T^*)$. Therefore, we have $N(T) = N(T^*)$.

- (ii) We'll show that $R(T) = R(T^*)$:
 - Claim 1: $N(TT^*) = N(T)$. If $TT^*(x) = 0$, then $0 = \langle TT^*(x), x \rangle = \langle T^*T(x), x \rangle = \langle T(x), T(x) \rangle$ which implies T(x) = 0. If T(x) = 0, then $TT^*(x) = T^*T(x) = T^*(0) = 0$.
 - Claim 2: $R(TT^*) = R(T)$.

First, $R(TT^*) \subset R(T)$ is obvious. Second, by claim 1 and the rank-nullity theorem, one has rank $(TT^*) = \operatorname{rank}(T)$. Therefore $R(TT^*) = R(T)$..

Thus $R(T) = R(TT^*) = R(T^*T) = R(T^*T^{**}) = R(T^*)$

Or alternatively, using the result of §6.3 Q12, one has $R(T^*) = N(T)^{\perp} = N(T^*)^{\perp} = R(T^{**}) = R(T).$

This completes the proof.

- 5. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
 - (a) U(W) = W
 - (b) W^{\perp} is U-invariant.
 - Proof. (a) If $x \in N(U|_W)$, then $0 = ||U|_W(x)|| = ||U(x)|| = ||x||$, which implies x = 0. Therefore, $U|_W$ is one-to-one. Since $U|_W : W \to W$ is defined on a finite-dimensional space W, one has $U|_W$ is onto. Thus $U(W) = U|_W(W) = W$.
 - (b) Let $x \in W^{\perp}$. For any $y \in W$, by (a), there exists $z \in W$ such that U(z) = y. Then $\langle U(x), y \rangle = \langle U(x), U(z) \rangle = \langle x, z \rangle = 0$. Therefore $U(x) \in W^{\perp}$.

This completes the proof.